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Local heat flux and energy loss in a two-dimensional vibrated granular gas
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We performed event-driven simulations of a two-dimensional granular gas between two vibrating walls and
directly measured the local heat flux and local energy dissipation in the stationary state. Describing the local
heat flux as a function of the coordinate x in the direction perpendicular to the driving walls, we test a
generalization of Fourier’s law, g(x)=—«VT(x)+uV p(x), by relating the local heat flux to the local gradients
of the temperature and density. This ansatz accounts for the fact that heat flux can also be generated by density
gradients, not only by temperature gradients. Assuming the transport coefficients « and u to be independent of
x, we check the validity of this assumption and test the generalized Fourier law in the simulations. Both « and
wm are determined for different system parameters, in particular, for a wide range of coefficients of restitution.
We also compare our numerical results to existing hydrodynamic theories. Agreement is found for « for very
small inelasticities only, i.e., when the gradients are small. Beyond this region, « and w exhibit a striking
nonmonotonic behavior. This may hint that hydrodynamics to Navier-Stokes order cannot be applied to mod-

erately inelastic vibrated systems.
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Driven granular gases have attracted much attention in
recent years [1-7]. This is partly because in these systems,
energy loss in inelastic collisions is eventually balanced by
energy input from the driving so that a stationary state can be
attained. In physically realistic models, the driving usually
acts at the boundaries of the system, e.g., in terms of shear-
ing forces or vibrating walls. Thus, maintaining a stationary
state requires a subtle and well-balanced mechanism to trans-
fer energy from the system’s boundaries to its interior. The
local energy (or heat) flux and the local energy-dissipation
rate are, therefore, at the heart of every hydrodynamic de-
scription [5,8—11] of the stationary state of driven granular
gases.

Hydrodynamic approaches to granular media require the
knowledge of constitutive relations for the pressure tensor,
heat flux, and local energy loss in order to close the balance
equations for mass, momentum, and energy. In a previous
work, we presented the pressure tensor and found that a local
constitutive relation holds while, in general, it is not univer-
sal [6]. Here, we focus on the remaining two constitutive
relations.

Fourier’s law states for elastic systems that the heat cur-
rent is proportional to the local temperature gradient, the
proportionality constant being the thermal conductivity &
[12]. For inelastic systems, there is an additional contribution
to the heat current from density gradients [8]. The corre-
sponding transport coefficient u has no analog in elastic sys-
tems. Theoretical approaches start from the Boltzmann-
Enskog equation to account for these effects. Jenkins and
Richman [8] have used Grad’s moment expansion to com-
pute the heat flux for small inelasticity, whereas Dufty et al.
[9] have pushed kinetic models using a stosszahl ansatz to
simplify the collision operator. Molecular dynamics (MD)
simulations have been performed by Soto et al. [13] to study
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wm for a granular gas on a vibrated plane in the dilute limit.

In this paper, we study the local heat flux and local
energy-loss rate, as well as the transport coefficients x and u
for a driven granular gas in two dimensions. We perform
event-driven simulations of N identical inelastic smooth hard
disks of diameter @ and mass m which are confined to a
rectangular box with edges of length L, and L,. Periodic
boundary conditions are imposed in the y direction, and the
gas is driven through the walls perpendicular to the x direc-
tion, see Fig. 1 for a typical snapshot. The left and right walls
vibrate in an idealized sawtooth manner, characterized by the
driving velocity v 4;..>>0: Upon a collision of a particle with
the left or right wall at x= = L,/2, the x component of its
velocity changes according to v, =-20v,+Ugy, see also Ref.
[6]. Inelastic interparticle collisions are modeled using a con-
stant coefficient of normal restitution « € ]0, 1[ according to
N-v{,=—afi-v,. Here, i denotes the unit vector of the par-
ticles’ relative center-of-mass positions, and v ,, resp. v{, are
the precollisional, respectively, postcollisional relative
center-of-mass velocities.

A simple estimate in Ref. [6] yields for the spatially av-
eraged granular temperature T0=N‘12§\;1mviz/ 2 in the sta-
tionary state
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FIG. 1. (Color online) Model of N disks driven in the x direction
with periodic boundary conditions in the y direction.
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FIG. 2. (Color online) Heat flux in the x di-
rection g, (in dimensionless units) for a system of
N=256 particles with coefficient of restitution «
=0.9 in a box of size L,=20 and L,=25, corre-
sponding to a total area fraction of ~q§0=0.4. The
dotted line shows the kinetic part ql;i“; the dashed
line is the collisional part q.ixm; and the full line

represents the total heat flux ¢,. The inset dis-
plays the local energy-loss rate {.
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Here e:=1-0a? and = \5)()\ are dimensionless parameters.
The latter involves the pair correlation at contact y of the
corresponding elastic system and the line density A\:=N/L,.

In the following discussion of heat flux and dissipation,
we will, inter alia, be interested in a scaling limit €0 to-
wards an elastic system. In order to prevent the system from
heating up indefinitely when switching off dissipation, we
also need to scale the driving velocity vg;ye =t €0, Where v
is fixed. Hence, the driving vanishes in the elastic scaling
limit, and the spatially averaged temperature reaches a finite
value, approximately given by Ty~ 16/ (x\)2mv? accord-
ing to Eq. (1).

Locally, the translational energy changes due to collisions
as well as due to free streaming of the particles in between
collisions. The latter gives rise to a kinetic contribution to the
heat current qki“, whereas the collisions are responsible for
the energy loss { as well as for the collisional contribution to
the heat current ™. For vanishing macroscopic velocity, the
energy balance equation is usually formulated as [8,9]

p(m)aﬁtm,r) - Vg0 + {0 2

for the hydrodynamic fields of density p, temperature 7, total
heat current q=q""+q™, and local energy dissipation rate .
To compare our simulations to the hydrodynamic theory,
we need to introduce a coarse graining function ®(r) [14],
which is nonzero in a small area centered at r only. We
require, of course, [drd(r)=1. In the absence of a velocity
field, the coarse grained kinetic heat current is defined by

N 2
. mv;
" (r.) =3 VP -, 3)
i=1

The coarse grained density p(r) and temperature T(r) are
defined analogously.

The change of energy during a binary collision in a small
time interval Az can be decomposed into a source term and a
divergence of a flux. The coarse grained energy dissipation
rate {(r,7) can be calculated analogous to [14] and is given
by

l
Ur,1) = EE] (AEy; + AE;)®(r - 1) (4)

in terms of the change of energy AE;; of particle i due to a
collision with particle j in the time interval [#,7+Af]. The
prime at the summation sign restricts i and j to those par-
ticles colliding in Az. The energy dissipation rate trivially
vanishes in the elastic case, when AE,;;=—AE;. Similarly,
the collisional contribution to the heat current is given by

) 1 / 1
qmt(l‘,f) = EE (AEI‘I - AEji)rijj CI)(r —-r;+ srij)ds,
ij 0

(5)

where r;;=r;—r;. In our simulations we have never found
any significant variations of the long time averages of the
hydrodynamic fields in the y direction parallel to the driving
walls. Hence, we coarse grain our system by subdividing the
box into strips of width Ax.

In the following, we report numerical results on the sta-
tionary state only. For more details of the simulations, such
as initialization or relaxation toward the stationary state, the
reader is referred to Ref. [6]. For dimensional reasons, the
driving velocity vq sets the time and energy scale and is
chosen to be 1. Likewise, the particle mass and diameter set
the mass and length scales.

We first present data for the heat-flux profile in Fig. 2 for
a system of global area fraction ¢y:=Nm/(4L,L,)=0.4 and
coefficient of normal restitution @=0.9. More precisely, the
figure displays the x component of the heat flux and its ki-
netic and collisional part as a function of the normalized
position x/L,. The inset shows the local energy-loss rate and
will be discussed below. The heat flux is antisymmetric about
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FIG. 3. (Color online) Rescaled (dimensionless) heat flux ¢,/
for a wide range of coefficients of restitution 0.6< @ <0.995 for
otherwise fixed systems (L,=20, ¢y=0.4).

the middle of the system as expected. We clearly see that its
collisional part, Eq. (5), which is represented by the dashed
line cannot be neglected. It is of the same order of magnitude
as the kinetic contribution—depicted by the dotted line and
corresponding to Eq. (3). For lower density systems, the col-
lisional contribution becomes less important but still it is not
negligible for global area fractions even as low as ¢y=0.1.
This is not surprising since the collisional part is known to be
important in elastic hard sphere systems, but to our knowl-
edge it has not been directly measured in systems of inelastic
hard spheres before. Interestingly, both the kinetic and the
collisional contribution are nonlinear in the position x. How-
ever, the combination of both, resulting in the total heat flux,
is almost linear throughout the system.

Now we turn to the dependence of the heat flux on the
coefficient of restitution « in the elastic scaling limit. We
recall that the driving strength has been adjusted such that
the granular gas attains a finite temperature as € —0. The
heat flux is proportional to the temperature per time and,
hence, is expected to scale like Tovgive ~ € [cf. Eq. (1)]. This
argument is checked by plotting ¢g,/e for different coeffi-
cients of restitution in Fig. 3. The collapse of different data
sets is excellent for almost elastic systems (e<<1, i.e., @
=0.95). For higher inelasticities, this scaling no longer
holds.

In Fig. 4, we show the rescaled heat flux L g, for a fixed
coefficient of restitution «=0.99 and various system sizes L,.
It has been shown [6] that the scale for temperature inhomo-
geneities is set by L,, so that we expect the heat flux to scale
like L;l, if plotted versus x/L,. For dilute systems (¢,
=<1%), we get a decent data collapse. For higher densities,
this scaling captures the correct order of magnitude only.

It is a characteristic feature of hydrodynamics of inelasti-
cally colliding particles that a heat current can be generated
not only by a nonuniform temperature, but also by density
inhomogeneities. If the spatial variations of temperature or
density are restricted to long wavelengths, one would expect
a gradient expansion to hold. The simplest constitutive equa-
tion for the heat flux is thus a straightforward generalization
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FIG. 4. (Color online) Rescaled (dimensionless) heat flux L,q,
for a wide range of box edges (area fraction 0.001< ¢y<0.4 at
fixed line density N/L,=10.24 and fixed coefficient of restitution
a=0.99. This graph looks almost the same for all @=0.9.

of Fourier’s law, as discussed in the literature (cf. [12]).
Chapman-Enskog expansions of both the Boltzmann and the
Boltzmann-Enskog equations predict that the heat flux of an
inelastic system is given

d d
qx(x) == KET(X) + Map(x)’ (6)

where « is the heat conductivity and w is a new transport
coefficient that has no analog for elastic systems [8,9].

To check the validity of Eq. (6), we estimate the transport
coefficients from our data by assuming that both « and w do
not depend on the position x, i.e., we assume them to be
constant throughout the box. It is then straightforward to
extract these transport coefficients from a fit of our data to
the above expression (6). In Fig. 5, we show both transport
coefficients x and w/e. Both are nonmonotonic in «. In the
elastic limit, we find that « tends to a nonzero constant, while
pm<e. At moderately high densities, the fit of the heat flux to
Eq. (6) with constant fit parameters « and w is very good for
all investigated «, e.g., for =0.9 or «=0.99, it matches the
heat flux from our simulations very well as can be seen in the
top row of Fig. 6 (bold dotted lines lie on top of full [indigo]
lines). Note, however, that our fitting procedure becomes in-
creasingly difficult as a— 1 because the temperature gradi-
ent becomes proportional to the density gradient. Conse-
quently, it is not possible for a¢—1 to determine two
parameters from the fit unambiguously.

We conclude that the generalized Fourier law holds as a
constitutive relation for the heat flux. For lower densities and
higher inelasticities, the gradients increase and the fit be-
comes worse implying a failure of the generalized Fourier
law. Notice that the original Fourier law ¢=—«V T does not
hold whereas its generalization does (see Fig. 6).

Both transport coefficients have been computed within ki-
netic theory for small inelasticities by Jenkins and Richman
[8], who find for the thermal conductivity
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FIG. 5. (Color online) Transport coefficients
x and w as functions of the coefficient of restitu-
tion « for systems of size L,=20 and line density
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where r:=(1+a@)/2. We use the Henderson approximation
[15] for the pair correlation at contact y, which is a function
of the area fraction only. Inserting the local temperature 7/(x)
and local area fraction ¢(x) from our simulations into (7), we
obtain a spatially dependent transport coefficient x..(x) and,
from a corresponding equation in [8], u,.(x). The resulting
heat flux from Eq. (6) is shown in Figs. 6(a) and 6(b) (dashed
[green] lines) and found to agree very well with the simula-
tions for a=0.99. The agreement is reasonable even up to
a~0.96. For larger inelasticities, the constitutive relation
from Ref. [8] captures the correct order of magnitude, but
overestimates the curvature of ¢,(x) [see Fig. 6(b)].

Alternatively, we can use the global or mean temperature
T, and area fraction ¢ to evaluate Eq. (7) and the respective
equation from Ref. [8] for w. In the inset of Fig. 5, we
compare this k; to the thermal conductivity « obtained from
fitting our simulations to Eq. (6). The agreement is reason-
able as long as @=0.99. However, for inelasticities between
a=0.9 and @=0.99 the heat conductivity « from our simu-
lations deviates strongly from the prediction of Ref. [8]. As
to o (not shown), the deviations to u are even stronger. This
failure around @=0.95 coincides with strongly increasing
gradients which may hint that the hydrodynamics to first
order in the gradients (Navier-Stokes order) is no longer
valid. Our results also deviate strongly from the ones ob-
tained in Ref. [13], most notably they find u to be negative.
Note, however, that in those simulations, the density is low
and the density gradients are imposed by gravity. In our
simulations, the density is much higher and tends to accumu-
late in the middle of the sample, away from the driving
walls. The heat flux is directed from the walls to the center of
the system and, hence, follows the gradient of the density. In
a system without gravity, this seems physically plausible:
regions of high density cool more efficiently due to an in-
creased number of collisions and, hence, heat flows in.

The difference between ..(x) and k; is only a few per-

cent for «=0.99. The difference in the corresponding heat
fluxes is even less, because the strongest inhomogeneities in
the transport coefficients occur in the middle of the sample
where the gradients of temperature and density vanish. To
demonstrate this, in the top row of Fig. 6, we also show the
heat flux computed using constant transport coefficients
and u, (i.e., inserting constant values into Eq. (7), dotted
[red] lines). The fluctuations of the transport coefficients
with the position x increase with increasing inelasticity, e.g.,
for @=0.9, we find x,.(0)/ k= 1.5.

To estimate the degree of inhomogeneity, we have divided
the box into an inner and an outer part and fitted the heat
current using data from either half of the box only. The scat-
tering of the data from the inner and outer part is shown in
Fig. 5 and provides a rough measure for the effects of inho-
mogeneous transport. The results for the outer half are al-
most identical to the ones for the full system. This is also
true for the inner part except for the weakly inelastic systems
for which the absolute value of the heat flux in the middle of
the sample is so small that statistical fluctuations dominate.

The local energy loss, as defined in Eq. (4), is shown in
the inset of Fig. 2 and in the bottom row of Fig. 6. Again,
for «>0.99 the agreement with the predicted ¢
=—16e¢’x(T/m)*? from [8] is very good in the bulk part of
the sample. The large fluctuations close to the driving wall
are due to the pair correlation function that enters the consti-
tutive equation for the energy loss as well as the one for the
heat flux. At higher inelasticities, deviations are clearly vis-
ible in the bulk, too. For very dilute quasi-elastic systems
(¢p=0.1,0=0.95), the dissipation is highest in the middle
of the sample. For denser and/or more inelastic systems, we
find the absolute value of ¢ (the dissipation) to be greatest in
an intermediate region x~ +0.3L,. Even though the density
is largest in the middle of the sample, energy dissipation is
not very pronounced there because the mean kinetic energy
is already comparatively small. Integrated over any part of
the box, the local energy loss has to fulfill the conservation
law g,(a)—q,(b)=[{(x)dx, where —L,/2<a<b<L,/2. We
have checked it only for the case —a=b=L,/2 in the simu-
lations, which required careful measurements of the heat flux
at the boundaries.
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FIG. 6. (Color online) Comparison of heat flux (top row) and local energy loss (bottom row) for coefficients of restitution a=0.99 (left
column) and @=0.9 (right column). The heat flux from our simulations is very well captured by Eq. (6) as the fit (bold dotted lines) confirms.
For quasi-elastic systems, the constitutive relation for the heat flux as well as for the local energy loss calculated in Ref. [8] (dashed [green]
lines) agrees well with our simulations. For higher inelasticities, the agreement is only qualitative. The dotted [red] lines show the same as
the dashed [green] lines but with constant transport coefficients from Ref. [8]. The dashed-dotted lines show a fit to Fourier’s law of heat

conductivity.

In this paper, we have discussed the heat current in a
granular gas driven by vibrating walls. We have measured
the collisional contribution to the heat current and have
shown that it cannot be neglected, not even in low density
systems. We have extracted both transport coefficients of the
heat flux for a wide range of inelasticities 0.6 < a=<0.995
and area fractions 0.01 < ¢, =<0.4. The elastic limit has been
studied in detail. It is reached by scaling the driving velocity
with &, so that the temperature tends to a finite value as
a—1.

Assuming the transport coefficients to be constant, we
observed a nonmonotonic behavior: The thermal conductiv-
ity « first decreases with increasing &, goes through a mini-
mum around @=0.96, and then increases again. The trans-
port coefficient u/e first increases with e, goes through a
maximum at a¢=0.96, and then decreases again. Further-
more, a rough estimate of the fluctuations of the transport
coefficients with spatial position in the box has been given.
These effects are expected to be strong for moderately in-

elastic systems which are characterized by nonuniform den-
sity and temperature.

Comparing our data to theoretical work in two dimensions
[8], we found good agreement for a=0.99. For stronger in-
elasticities, the temperature and density gradients increase
and the theoretical predictions fail. This may imply that
Navier-Stokes order hydrodynamics is not sufficient for de-
scribing moderately inelastic steady-state vibrated systems.
Clearly, this point needs further investigation.

We thank Hans Vollmayr for pointing out to us the impor-
tance of the elastic limit and Isaac Goldhirsch for suggesting
to investigate the heat flux. O.H. thanks Javier Brey, James
Dufty, James Jenkins, and Christine Menzel for discussions.
We acknowledge financial support by the DFG through SFB
602, as well as Grant Nos. Zi 209/6-1 and Mu 1056/2-1. This
research was also supported in part by the National Science
Foundation under Grant No. PHY99-0794.

041303-5



HERBST, MULLER, AND ZIPPELIUS

[1] T. P. C. van Noije and M. H. Ernst, Granular Matter 1, 57
(1998).

[2] C. Bizon, M. D. Shattuck, J. B. Swift, and H. L. Swinney,
Phys. Rev. E 60, 4340 (1999).

[3] R. Cafiero, S. Luding, and H. J. Herrmann, Phys. Rev. Lett.
84, 6014 (2000).

[4] D. L. Blair and A. Kudrolli, Phys. Rev. E 67, 041301 (2003).

[5] H. Hayakawa, Phys. Rev. E 68, 031304 (2003).

[6] O. Herbst, P. Miiller, M. Otto, and A. Zippelius, Phys. Rev. E
70, 051313 (2004).

[7] M. Bose and V. Kumaran, Phys. Rev. E 69, 061301 (2004).

[8] J. T. Jenkins and M. W. Richman, Phys. Fluids 28, 3485

PHYSICAL REVIEW E 72, 041303 (2005)

(1985).
[9]1J. W. Dufty, J. J. Brey, and A. Santos, Physica A 240, 212

(1997).

[10] N. Sela and 1. Goldhirsch, J. Fluid Mech. 361, 41 (1998).

[11]J. T. Jenkins and C. Zhang, Phys. Fluids 14, 1228 (2002).

[12] S. Chapman and T. G. Cowling, The Mathematical Theory of
Nonuniform Gases (Cambridge University Press, London,
1970).

[13] R. Soto, M. Mareschal, and D. Risso, Phys. Rev. Lett. 83,
5003 (1999).

[14] B. J. Glasser and 1. Goldhirsch, Phys. Fluids 13, 407 (2001).

[15] D. Henderson, Mol. Phys. 30, 971 (1975).

041303-6



